Manganese-enhanced MRI enables longitudinal tracking of transplanted stem cell viability in the murine myocardium
نویسندگان
چکیده
Background Stem cell therapy in the heart is limited by an inability to track transplanted cell survival. To address this limitation, we used human amnion-derived mesenchymal stem cells (hAMSCs), which exhibit longer in vivo survival, and Manganese (Mn2+)-Enhanced MRI (MEMRI), which enters live stem cells to augment T1 signal. We tested Mn2+ pre-labeling of hAMSCs in vitro and whether MEMRI would detect hAMSC survival in mouse myocardium in vivo.
منابع مشابه
Manganese-Enhanced Magnetic Resonance Imaging Enables In Vivo Confirmation of Peri-Infarct Restoration Following Stem Cell Therapy in a Porcine Ischemia–Reperfusion Model
BACKGROUND The exact mechanism of stem cell therapy in augmenting the function of ischemic cardiomyopathy is unclear. In this study, we hypothesized that increased viability of the peri-infarct region (PIR) produces restorative benefits after stem cell engraftment. A novel multimodality imaging approach simultaneously assessed myocardial viability (manganese-enhanced magnetic resonance imaging ...
متن کاملDirect measurement of myocardial viability by manganese-enhanced MRI (MEMRI) tracks the regenerative effects by human pluripotent stem cell derived cardiomyocytes (hPCMs)
Background Human pluripotent stem cell derived cardiomyocytes (hPCMs) may regenerate the myocardium to restore the cardiac function. Manganese-enhanced MRI (MEMRI) enters the cardiomyocytes via calcium channel to generate viability signal directly. Persistent engraftment of the hPCMs associated with increased myocardial viability and LVEF suggests regeneration. This study tests the hypothesis t...
متن کاملManganese-enhanced MRI in the evaluation of cell-based therapy for myocardial restoration
Background To date, the underlying mechanism responsible for the restoration of the injured myocardium following transplantation of stem cells has not been clearly identified. Three major hypotheses have been previously proposed: cardiac differentiation of transplanted cells (de novo myocardial regeneration), paracrine effect on existing myocardium (myocardial salvage) or recruitment of cardiac...
متن کاملIn vitro labeling of human embryonic stem cells for magnetic resonance imaging.
Human embryonic stem cells (hESC) have demonstrated the ability to restore the injured myocardium. Magnetic resonance imaging (MRI) has emerged as one of the predominant imaging modalities to assess the restoration of the injured myocardium. Furthermore, ex-vivo labeling agents, such as iron-oxide nanoparticles, have been employed to track and localize the transplanted stem cells. However, this...
متن کاملNovel MRI Contrast Agent from Magnetotactic Bacteria Enables In Vivo Tracking of iPSC-derived Cardiomyocytes
Therapeutic delivery of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) represents a novel clinical approach to regenerate the injured myocardium. However, methods for robust and accurate in vivo monitoring of the iCMs are still lacking. Although superparamagnetic iron oxide nanoparticles (SPIOs) are recognized as a promising tool for in vivo tracking of stem cells usin...
متن کامل